Use of Finite Difference Time Domain Simulations and Debye Theory for Modelling the Terahertz Reflection Response of Normal and Tumour Breast Tissue

نویسندگان

  • Anthony J. Fitzgerald
  • Emma Pickwell-MacPherson
  • Vincent P. Wallace
چکیده

The aim of this work was to evaluate the capabilities of Debye theory combined with Finite Difference Time Domain (FDTD) methods to simulate the terahertz (THz) response of breast tissues. Being able to accurately model breast tissues in the THz regime would facilitate the understanding of image contrast parameters used in THz imaging of breast cancer. As a test case, the model was first validated using liquid water and simulated reflection pulses were compared to experimental measured pulses with very good agreement (p = 1.00). The responses of normal and cancerous breast tissues were simulated with Debye properties and the correlation with measured data was still high for tumour (p = 0.98) and less so for normal breast (p = 0.82). Sections of the time domain pulses showed clear differences that were also evident in the comparison of pulse parameter values. These deviations may arise from the presence of adipose and other inhomogeneities in the breast tissue that are not accounted for when using the Debye model. In conclusion, the study demonstrates the power of the model for simulating THz reflection imaging; however, for biological tissues extra Debye terms or a more detailed theory may be required to link THz image contrast to physiological composition and structural changes of breast tissue associated with differences between normal and tumour tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumour radiobiology beyond fractionation

Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...

متن کامل

Proposing New Methods to Enhance the Low-Resolution Simulated GPR Responses in the Frequency and Wavelet Domains

To date, a number of numerical methods, including the popular Finite-Difference Time Domain (FDTD) technique, have been proposed to simulate Ground-Penetrating Radar (GPR) responses. Despite having a number of advantages, the finite-difference method also has pitfalls such as being very time consuming in simulating the most common case of media with high dielectric permittivity, causing the for...

متن کامل

Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression

Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of spro...

متن کامل

NORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS

This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...

متن کامل

Band Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect ‎Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method‎

We report the simulation results for impact of nonlinear Kerr effect on band structures of a ‎two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide ‎‎(W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a ‎square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The ‎numerical simulation was performed using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014